2 תשובות
כפי שאמר הבחור מעליי, זה ככל הנראה אומר שאיקס שייך לקבוצת המספרים הממשיים.
עכשיו, אינסוף הוא לא מספר לכן אתה לא יכול להגיד "מינוס אינסוף".
מה שכן, מספרים ממשיים הם כל המספרים שמייצגים כמות כלשהי (שזה הרוב המוחלט של המספרים), לכן אתה יכול להתייחס לזה בתור "איקס הוא מספר כלשהו" (המספרים שלא מייצגים כמות הם מספרים מרוכבים, ואלו שורשים של מספרים שליליים... זה מסובך).
עכשיו, אינסוף הוא לא מספר לכן אתה לא יכול להגיד "מינוס אינסוף".
מה שכן, מספרים ממשיים הם כל המספרים שמייצגים כמות כלשהי (שזה הרוב המוחלט של המספרים), לכן אתה יכול להתייחס לזה בתור "איקס הוא מספר כלשהו" (המספרים שלא מייצגים כמות הם מספרים מרוכבים, ואלו שורשים של מספרים שליליים... זה מסובך).
x זה מספר כלשהו
אני מאמין שלא בדיוק e זה הסימון ל "שייך"
וr זה קבוצת המספרים הממשיים
x e r
קוראים את זה כ- איקס שייך לקבוצת הממשיים
כלומר זה מספר בקבוצת הממשיים שזה בעצם כל מספר בין אינסוף למינוס אינסוף - הגדרה מאוד לא מדוייקת אבל אתה מבין חח. קשה מאוד להגדיר את קבוצת הממשיים במדוייק צריך קודם לדעת את הגדרת הגבול שהיא אחת ההגדרות היותר מסובכות ולא אינטואיטיביות במתמטיקה.
פשוט תתייחס לזה שאיקס יכול להיות כל מספר.
בברכה, לחם פיט.
אני מאמין שלא בדיוק e זה הסימון ל "שייך"
וr זה קבוצת המספרים הממשיים
x e r
קוראים את זה כ- איקס שייך לקבוצת הממשיים
כלומר זה מספר בקבוצת הממשיים שזה בעצם כל מספר בין אינסוף למינוס אינסוף - הגדרה מאוד לא מדוייקת אבל אתה מבין חח. קשה מאוד להגדיר את קבוצת הממשיים במדוייק צריך קודם לדעת את הגדרת הגבול שהיא אחת ההגדרות היותר מסובכות ולא אינטואיטיביות במתמטיקה.
פשוט תתייחס לזה שאיקס יכול להיות כל מספר.
בברכה, לחם פיט.
באותו הנושא: